

WATER SUPPLY

&

DISTRIBUTION SYSTEM STUDY Summary Presentation Regular Council Meeting, Sept 14, 2015

WATER SUPPLY & DISTRIBUTION SYSTEM STUDY

Study Purpose

- Assess the present & future capacity of the District's water supply source.
- Review historical water demands. Compare with those of other municipalities
- Review and compare design standard water demands with those of other municipalities.
- Analyze the ability of the water distribution system to deliver domestic and fire flow demands.
- Provide recommendations to maintain an adequate level of service both now and in the future.

- 1 Water Supply (wellfield capacity)
- 2 Water Use (how much and where)
- **3** Serving Additional Properties
- 4 Infrastructure Works
- 5 Recommendations

Part 1 Water Supply

- District Wellfield (location & pumping rates)
 - Wellfield Aquifer
 - Wellfield Yield

Water Supply Source

Four Wells

1979	#4	728 m ³ /day	(8.4 L/s)
1983	#6	543 m ³ /day	(6.3 L/s)
1986	#9	190 m ³ /day	(2.2 L/s)
1990	#12	566 m ³ /day	(6.6 L/s)

Estimated current maximum pumping rate when all pumps operating simultaneously:

2,027 m³/day (23 L/s)

Wellfield discharges into Ware Rd Reservoir where it is treated (chlorinated).

Treated water pumped to Aulds Rd Reservoir.

Wellfield Aquifer Description

Lowen Hydrogeology Consulting Ltd. PO Box 45024 Victorie, B.C. V9A-0C3 Phone: 250-595-0624 Fax: 1-855 -286-8001 Website: <u>www.kowenhc.co</u>

- The aquifer that the District's well extract water from is labelled #215 by the Ministry of Environment.
- The groundwater level fluctuates throughout the year. Review of water levels revealed up to 3 m of change from the wet winter to dry summer months.
- Aquifer recharge is dependent on:
 - precipitation (snow/rainfall) in the upland area that infiltrates into the ground, and
 - may also be recharged in part by groundwater flowing through the underlying bedrock.

Current Conditions

Future Conditions (New Well No. 6 & Redevelopment/Upgrade of 4, 9, 12)

Well Date		Well	Water Level We	Well	Well Well	Estimated Current	Estimated Safe Pumping Yield (July/Aug 2014 & Feb 2015 Pumping Tests)		
No.	Drilled	Diameter	Depth	Depth	wotor	Capacity	Individual	Sim	ultaneous
		(mm)	(m)	(m)	(Hp)	(m³/day)	(m³/day)	(m³/day)	% of Total
4	Aug 1979	200	1.1	21	20	728	1,019	901	37 %
6	April 1983	200	- 0.5 *	16	10	543	836	668	27 %
9	Oct 1986	200	3.3	24	5	190	352	281	12 %
12	Oct 1990	200	0.5	21	10	566	718	574	24 %
			Wellfield Es	timated Max	imum Yield:	2,027	-	2,424	100 %
			2014	Maximum D	ay Demand:	1,421		1,421	59 %
			Estimate	ed Maximum	Difference:	606		1,003	41 %
						(7 L/s)		(12 L/s)	

Note:

* Indicates Well No. 6 is an artesian well with a static water level of 0.5 m above ground.

Lowen Hydrogeology Consulting Ltd.

PO Box 45024 Victoria, B.C. V9A-0C3 Phone: 250 -595-0624 Fax: 1-855 -286-8001 Website: www.lowenhc.ca

Long-term safe yield

The long-term safe yield of a well was determined by extrapolating the pump test drawdown to a 100 days of pumping, calculating the specific capacity at 100 days and utilizing the safe available drawdown.

Safe available drawdown

For confined aquifer conditions, as is the case for the District of Lantzville, is dependent on the distance between the static water level and the top of the aquifer.

Part 2 Water Demands

- Annual, Monthly, Average Day & Maximum Day Demands (historic)
 - Revenue & Non-Revenue Water
 - Water Demand by Land-Use
 - Design Demands

Annual, Maximum Day & Average Day Demands <u>1996 - 2015</u>

District of Lantzville

Monthly Demands <u>2011 – 2015</u>

Daily Demand March 2011 – June 2015

KOERS & ASSOCIATES ENGINEERING LTD. Consulting Engineers

Jul 1, 2015

Oct 1, 2015

Revenue & Non-Revenue Water, 2014

22% Non-Revenue.

While a noticeable amount, it is not unexpected or unusual for a water system of this size, age and operating pressures.

Non-Revenue Water Sources

Non-revenue water encompasses unbilled authorized consumption and apparent and real system losses, which may consist of:

Unbilled Authorized Consumption

- Watermain flushing
- Sewer main flushing
- Fire department training and actual fire fighting
- Public boulevard and playfield irrigation

Apparent Losses

- Water theft
- Metering inaccuracies

Real Losses

- Leakage on transmission and/or distribution mains
- Leakage on service connections up to the customer's meter

Revenue Water, 2014

SF Residential Water Use, 2014

District of Lantzville

Demand by Land-Use <u>Compared to other Municipalities (2012)</u>

	Annual Metered Water Demand (2012)					
Municipality	Single Family (m³/dwelling)	Multi-Family (m ³ /dwelling)	Commercial (m³/unit)			
Tofino	182	110	590			
Parksville	199	n/a	2,130			
Lantzville	218	n/a	523			
Nanaimo	251	165	n/a			
Nanoose Bay Water Service Area	256	204	571			
Comox	290	150	4,032			
Comox Valley Water Local Service Area	382	264	771			

Per Capita Demand Compared to other Municipalities

		2014	Study Per Capita Demand					
a		2011 Canada	Average I	Day (lpcd)	Maximum			
Community	Study Year	Census Population	Residential	Total	Day (lpcd)	Max/ Total Ave		
Gold River	2002	1,267	786	866	2,252	2.6		
Ucluelet	2012	1,627	996	1,270	2,129	1.7		
Tofino *	2000	1,876	331	1,008	2,168	2.2		
Lantzville *	2015	3,643	246	321	663	2.1		
Ladysmith *	2013	8,691	430		729	1.7		
Qualicum Beach	2003	8,687		570	1,420	2.5		
Parksville *	1995	11,977		540	1,180	2.2		
Comox	2013	13,627		490	840	1.7		
Port Alberni *	1995	17,743	366	1,118	1,777	1.6		
Courtenay	2003	24,099		635	1,417	2.2		
Campbell River	2001	31,186		635	2,100	3.3		
Nanaimo *	1998	83,810		540	1,050	1.9		
Average (excluding Tofino/l	Jcluelet)			703	1,581			

Design Demand <u>Compared to other Municipalities</u>

	Municipal Per Capita Demand Design Standards							
Municipality	Average Day (Ipcd)	Maximum Day (lpcd)	Max/Ave Ratio	Peak Hour (lpcd)				
MMCD *	300	600	2	900				
Nanaimo	455	1,135	2.5	1,820				
Fairwinds		1,168	-	-				
Parksville	570	1,364	2.4	1,700				
Lantzville	-	1,380	-	-				
Qualicum Beach	-	1,780	-	3,150				
Courtenay	635	2,100	3.3	3,000				
Сотох	635	2,100	3.3	3,000				
Campbell River	635	2,100	3.3	3,000				

Part 3 Servicing Additional Properties

- OCP Water Service Area
- Based on Year 2014 Demands
 - Based on Design Demands
- Water Conservation (BC Government)
 - Climate Change

OCP Water Service Area

No. of Properties Serviced based on 2014 Average & Maximum Day Demand

No. of Properties Serviced

based on 2014 Average & Maximum Day Demand

Maximum No. of Lots Serviced for Varying Design Demands

Description	Max Day	Municipal Design Demand, Maximum Day				
Municipality	DoL (July 14, 2014)	(Nanaimo)	(Fairwinds)	(Parksville)	(DoL, on-site well)	(Qualicum Beach)
Maximum Day Demand - Lpcd	663	1,135	1,168	1,364	1,380	1,780
- Per Connection (m ³) *	1.61	2.79	2.87	3.36	3.39	4.38

Description			Number of Lots Serviced based on Maximum Day Design Demand				
At maximum pumping of	1,421	m³/day	(which equates to	70% of 2,027 m	³/day or	59% of 2,424 m³/day)	
Maximum Number of Service Connections:		885	511	497	424	421	326
At maximum pumping of	1,630	m³/day	(which equates to	80% of 2,037 m	³/day or	67% of 2,424 m³/day)	
Maximum Number of Service Connections:		1,012	584	568	485	481	372
At maximum pumping of	1,833	m³/day	(which equates to	90% of 2,037 m	³/day or	76% of 2,424 m³/day)	
Maximum Number of Service Connections:		1,139	657	639	546	541	418
At maximum pumping of	2,027	m³/day	(which equates to	100% of 2,027 r	n ³ /day or	84% of 2,424 m3/day)	
Maximum Number of Service Connections:		1,265	730	710	606	601	465
At maximum pumping of	2,182	m³/day		(which equa	ites to	90% of 2,424 m³/day)	
Maximum Number of Service Connections:		1,355	782	760	649	644	498
At maximum pumping of	2,424	m³/day		(which equat	es to	100% of 2,424 m ³ /day)	
Maximum Number of Service Connections:		1,505	869	845	721	715	553

BC Living Water Smart Program

- 2008, provincial government launched Living Water Smart program emphasizing water conservation.
- Program requires 50% of new municipal water needs to be acquired through conservation by Year 2020.
- It is not known if this program will be applied to groundwater licensing and if so, what further reduction of DoL's (already low) demands can be achieved.

A long-term shift in weather conditions and is measured by changes in a variety of climate indicators (e.g. temperature, precipitation, wind) including both changes in average and extreme conditions.

Government of Canada climate change website says:

(<u>www.climatechange.gc.ca</u>):

- Over the period 1948 to 2010, the average annual temperature in Canada has warmed by 1.6 °C, a higher rate of warming than in most other regions of the world.
- Future warming will be accompanied by other changes, including the amount and distribution of rain, snow, and ice and the risk of extreme weather events such as:
 - heat waves,
 - heavy rainfalls and related flooding,
 - dry spells and/or droughts, and
 - forest fires.

Climate Change

The potential impact climate change may have on either the District's water supply source (Aquifer #215) or changes in water demands by the consumers, is not known.

Generally, it is expected that the Vancouver Island region will experience:

- drier summers, and
- wetter winters.

Part 4 Infrastructure Works

• Additional Reservoir Storage

Reservoir Storage Volumes

Upper Pressure Zone (Aulds Rd) Reservoir

		Required Volume, m ³ in Year			
Description	Calculation	2014	2040		
			Low	High	
Fire Storage	75 L/s for 2 hrs	540	540		
Peaking Storage	25% of Max Day	91	231	359	
Emergency Storage	25% of (Fire + Peaking Storage)	158	193	213	
	Total Required Storage Volume:	790	964	1,112	
	Current Reservoir Storage Volume:	240	240	240	
	Resulting Storage Surplus/Deficit	550	724	872	

Reservoir Storage Volumes

Lower Pressure Zone (Ware Rd) Reservoir

		Required Volume, m ³ in Year				
Description	Calculation	2014	2040			
		2014	Low	High		
Fire Storage	200 L/s (for 2 hrs) to 250 L/s (for 3 hrs)	1,440 - 2,700	1,440	2,700		
Peaking Storage	25% of Max Day	264	375	583		
Emergency Storage	25% of (Fire + Peaking Storage)	426 – 741	1,175	1,226		
	Total Required Storage Volume: Current Reservoir Storage Volume:		2,270	4,105		
			1,887	1,887		
	Resulting Storage Surplus/Deficit:		383	2,218		
Potential Available Fire Storage in High Pressure Zone:		100 *	540	540		
	143 - 1,718	157	1,678			

Recommendations

- Apply for and secure a groundwater licence from the provincial government.
- Try to increase production of wellfield to the estimated long-term safe yield of 2,424 m³/day (28 L/s) by:
 - Replacing Well No. 6
 - Redeveloping Wells 4, 9 & 12.
- Increase reservoir storage volumes.
- Upgrade watermains to improve fire fighting capabilities.
- Continue replacement of aging (AC) watermains.
- Secure additional water supply source(s) in order to service the properties within the OCP Map 7 – Water Service Area

Comments & Questions

